There have been multiple accounts created with the sole purpose of posting advertisement posts or replies containing unsolicited advertising.

Accounts which solely post advertisements, or persistently post them may be terminated.

askscience

This magazine is from a federated server and may be incomplete. Browse more on the original instance.

Conyak , in Can cold-blooded animals die of hypothermia?

Cold blooded means their body temperature relies on an external source. It doesn’t mean they don’t need to have warm blood. Without an external heat source they become hypothermic and will eventually die.

CanadaPlus ,

Depends entirely on species.

Dubidu1212 , in Can someone give me a semi-layperson explanation of emission spectra?

There are many ways to do spectroscopy because of the wide range of wavelenghts of light. I won’t go into detail, but essentially what spectroscopy does is either:

  1. Put energy into a sample and see what is absorbed (absorbtion spectroscopy)
  2. Put energy in a sample and see what comes out (emission spectroscopy)

The reason those two methods produce characteristic results for each element is the following: An atom is made up of a nucleus of a certain charge and electrons canceling that charge around it. Those electrons are confined to so-called orbitals due to quantum weirdness (the “quantisation” of the orbitals is literally the origin of the word quantum). Those orbitals have different energies (you can imagine that an electron being very close to the nucleus is more strongly attracted than an electron which is farther away).

Because the electrons need to always be on those orbitals with fixed energies, only certain energies of photons can interact with them (if a different energy photon wanted to interact with an electron it would need to push the electron “between” two orbitals which is forbidden by quantum mechanics)

So now only certain energies of photons (which relate directly to wavelength) are absorbed, the rest passes uninterrupted leading to bands in the spectrum where lots of photons are absorbed.

Now depending on how many electrons your atom has and how far away they are from the nucleus those absorbtion bands will vary, giving you a good idea which atom you are looking at.

Emission spectroscopy works the other way around, instead of you seeing what is absorbed, you randomly put energy (often using heat) into the atom. When the atom wants to go back to its most stable state it has to emit a photon, this photon needs to correspond to a gab between two orbitals (because else the electron either starts or ends outside of an orbital (which is forbidden))

agissilver ,

For molecules the elecyrons of the individual atoms are mixed together into their own molecular orbitals that follow the same logic the commenter above had written with respect to energy levels and photons.

I’m specifying this because the OP was asking about individual elements within a molecule, and that’s not how that works. The electrons are shared so you don’t get the emissions from the elements composing the atoms in the molecules on their own.

Whirling_Cloudburst , in Does Higgs exist in nature or is it merely artificially synthesized particle?

Its better to not think of it as something we created in a lab. Higgs plays a part in making nature do what it does.

If you want to learn more about the Higgs Mechanism, check out this video from PBS Space Time. You might also find some good info in the comments as well.

Here is a space article.

Treczoks , in Is there an insect that can devour plastic, breaking it down to less harmful components?

I would not want anything like that even close ot my LEGO collection...

Damaskox OP ,
@Damaskox@lemmy.world avatar

It’s a shame you cannot see bacteria with naked eye!

You’d need some kind of a bacteria alarm system!

Anticorp , in Does physics ever get vague?

I’ve read that all math breaks down as you approach the big bang. I’m not educated enough in math to understand how, or why, but apparently they cannot mathematically understand the origin of the universe.

Wilzax ,

The universe is infinite, as far as we know.

But if you condense it all into something infinitely dense, then is it suddenly finite in size? Does it still have infinite size and simultaneously infinite density? Why didn’t the immense density cause it to form a black hole?

angrystego ,

I don’t think current understanding of things is that the universe is infinite. We can estimate the size of the universe we know, because we know how fast it is spreading and for how long. Wiki says: "Some disputed estimates for the total size of the universe, if finite, reach as high as 10 10 10 122 10^{10^{10^{122}}} megaparsecs. We don’t know whether that’s all there is though. We don’t even know whether the universe has the same properties everywhere, which complicates things.

Anticorp ,

My understanding is that it has a 14 billion light-year radius from any given point. We can only see 14 billion light years away, since the universe is only 14 billion years old (actually 13.8). Light can only travel at a given speed, so we can’t see beyond the distance light has traveled during the existence of the universe. But since the universe expanded in all directions, from everywhere all at once, it’s truly infinite. If you were to teleport 14 billion light-years in any direction, you would still see 14 billion years away, since the universe expanded from that point too during the big bang. It’s mindfuck level stuff.

Wilzax ,

That understanding is intuitive but very wrong. We can see parts of the universe that are up to 46 billion light years away because of the expansion of space. The actual physical universe extends beyond that, further than we can observe.

Anticorp ,

How can we see 46 billion years away? I’ve never heard that before.

Wilzax ,

The light didn’t travel 46 billion lightyears, but the objects whose light we are seeing are 46 billion lightyears away by the time we collect that light due to expansion. So the agreed on “radius of the observable universe” is 46.something GLY

Anticorp ,

How do they calculate that? Distance from object times known expansion rate, or something?

Wilzax , (edited )

youtu.be/XBr4GkRnY04 this old video from Veritasium explains the concept of the hubble sphere and the particle horizon, both of which are further than 13.8.Billion lightyears away

youtu.be/eVoh27gJgME this newer video from PBS Spacetime goes into much further detail about how they’re calculated

TauZero ,

They use the Lamda-CDM model which outputs the rate of expansion of the universe at every moment in past present and future. You measure the amount of light+matter+dark matter+dark energy that your universe has, plug those values into the Friedmann equation, and it spits out the rate.

You can try out an online calculator yourself! It already has those values filled in, all you need to do is enter the z value - the “redshift” - and click generate. So for example when you hear in the news something like “astronomers took a photo of a galaxy at redshift 3”, you put in 3 for “z”, and you see that the galaxy is 21.1 Gly (billions light years) away! That’s the “comoving distance”, a convenient way to define distance on cosmic scales that is independent of expansion rate or speed of light. It’s the same definition of distance that gives you that “46 Gly” value for the size of observable universe. But the light from that galaxy only took 11.5 Gyr to reach us. The universe was 2.2 Gyr old when the light started. So the light itself only traveled 11.5 Gly distance, but that distance is 21.1 Gly long right now because it kept expanding behind the photon.

Anticorp ,

That’s really neat. The more I read what you wrote, the more I was thinking this universe is a simulation.

AffineConnection ,

Crucially, we are able to determine the distance by redshift via the observations of objects with known distance (like standard candles) and their redshifts. The ΛCDM model only becomes necessary for extrapolating to redshifts for which we otherwise don’t know the distance, but this extrapolation cannot be made without the data of redshifts of known distances.

TauZero ,

That’s true! There is a kind of incestuous relationship between the cosmic distance measurements and the cosmic model. Astronomers are able to measure parallax only out to 1000 parsecs, and standard candles of type Ia supernovae to a hundred megaparsecs. But the universe is much bigger than that. So as I understand it they end up climbing a kind of cosmic ladder, where they plug the measured distances up to 100 Mpc into the the ΛCDM model to calculate the best fit values for the amounts of matter/dark matter and dark energy. Then they plug in those values along with the redshift into the model to calculate the distances to ever more distant objects like quasars, the Cosmic Microwave Background, or the age of the universe itself. Then they use observations of those distant objects to plug right back into the model and refine it. So those values - 28.6% matter 71.4% dark energy, 69.6 km/s/Mpc Hubble constant, 13.7 billion years age of the universe - are not the result of any single observation, but the combination of all observations taken to date. These values have been fluctuating slightly in my lifetime as ever more detailed and innovative observations have been flowing in.

Are you an astronomer? Maybe you can help me, I’ve been thinking - how do you even measure the redshift of the CMB? Say we know that CMB is at redshift 1100z and the surface of last scattering is 45.5 GLy comoving distance away. There is no actual way to measure that distance directly, right? Plugging in the redshift into the model calculator is the only way? And how do we know it’s 1100? Is there some radioastronomy spectroscopy way to detect elemental spectral lines in the CMB, or is that too difficult?

If we match the CMB to the blackbody radiation spectrum, we can say that its temperature is 2.726K. Then if we assume the temperature of interstellar gas at the moment of recombination was 3000K, we get the 1100z figure. Is that the only way to do it? By using external knowledge of plasma physics to guess at the 3000K value?

bitwaba ,

The expansion of the universe is measured at 70km per second per megaparsec (~3 million light years).

So if you take 2 things that started say ~3 billion light years apart (which would be ~1000x a megaparsec), that means every single second the universe has existed those 2 points have gotten 70,000km further apart. And now that they’re further apart, they separate even faster the next second.

For reference:

  • 31.5 million seconds in a year. ( 3.15 x 10^7 )
  • universe is 13.8 billion years old ( 1.38 x 10^10 )

So we talking about this 70,000km getting added between the 2 points ~4 x 10^17 times.

Then you gotta bring calculus into it to factor in the changing distance over time.

It … adds up. Which is why you’ll see the estimates for the observable universe’s radius being ~46.5 billion light years (93 billion light year diameter), even though the universe had only existed for ~14 billion years.

TauZero ,

And now that they’re further apart, they separate even faster the next second.

That’s a common misconception! Barring effects of matter and dark energy, the two points do NOT separate faster as they get farther apart, the speed stays the same! The Hubble constant H0 is defined for the present. If you are talking about one second in the future, you have to use the Hubble parameter H, which is the Hubble constant scaled with time. So instead of 70 km/s/Mpc, in your one-second-in-the-future example the Hubble parameter will be 70 * age of the universe / (age of the universe + 1 second) = 69.999…9 and your two test particles will still be moving apart at 70000km/s exactly.

The inclusion of dark energy does mean that the Hubble “constant” itself is increasing with time, so the recession velocity of distant galaxies does increase with time, but that’s not what you meant. Moreover, the Hubble constant hasn’t always been increasing! It has actually been decreasing for most of the age of the universe! The trend only reversed 5 billion years ago when the effects of matter became less dominant than effects of dark energy. This is why cosmologists were worried about the idea of a Big Crunch for a while - if there had been a bit more matter, the expansion could have slowed down to zero and reversed entirely!

bitwaba ,

Oh wow thanks. You learn something new every day! I’m definitely an “armchair physicist”, and still find it hard to think about things in a nonstacically geometric way.

Sounds like the Hubble Constant ain’t so constant :)

Anticorp ,

Thanks! That kind of math is definitely above my education.

bitwaba ,

NASA says the universe is flat.

It’s impossible to measure precisely enough to know for sure that it is completely flat, or even saddle shaped (both being infinite in size). The generally accepted understanding by cosmologists is that it is infinite. But just due to the nature of measurement and tools we can’t completely rule out a finite universe. However we do know based on the measurements that it is really really… really really really big if it’s not infinite.

Spzi ,

It’s probably this:

Another problem lies within the mathematical framework of the Standard Model itself—the Standard Model is inconsistent with that of general relativity, to the point that one or both theories break down under certain conditions (for example within known spacetime singularities like the Big Bang and the centres of black holes beyond the event horizon).[4]

My ELI5: Both theories work great, supported by vast amounts of evidence and excellent theoretical models. It seems they are two tools with distinct purposes. One for big and heavy stuff, the other for small and energetic stuff. The problem arises when big and heavy stuff is compressed into tiny spaces. This case is relevant for both theories, but here they don’t match, and we don’t know which to apply. It’s a strong hint we lack understanding, one of the biggest unsolved problems in physics.

So math itself is probably fine, we’re just at a loss how to use it in these extreme cases.

Some_username_u_have , in Does physics ever get vague?

One of the first things you learn in college-level science is accuracy and precision. A measurement can have a degree of correctness and a degree of exactness about the value. For example a sensor may get the wrong reading 3% of the time. When you have a big pile of readings, you don’t always have the time to validate them all. So, there is some uncertainty that you accept. The same sensor may only be able to give you an accurate reading down to a specific decimal point, which is expressed as precision. Anything less is given as a range in which error exists. These ideas are important, because when you do calculations based on those readings, you have to take the error with you. There may be a point where the value you reach is overshadowed by the magnitude of the error.

bstix , in Why were the dinosaurs huge?

They weren’t all big, but anyway, they (probably) evolved like giraffes to reach for food and as protection against physical damage from predators. The climate was also different and they had plenty of food.

Anyway, evolution does not select. It’s not survival of the coolest features… it’s only reproduction of those that manage to reproduce.

elbarto777 ,

Um, yes, evolution does select. That’s the whole point of evolution.

toasteecup ,

It selects the fittest, yes. The comment above you was saying it doesn’t select coolest or specific creatures, just ones most adapted.

bstix ,

There is no evolutionary selection. Only creatures fucking. Sometimes it isn’t selective.

neptune , in How could SI units be derived from scratch without the use of modern technology?

www.howtoinventeverything.com

This book was interesting.

Are you asking about how you reinvent the exact same meter? Well that won’t happen. Our units were arbitrary, useful, widely adopted, and then rigorously defined.

The book walks you through it all. You can don’t need to redo civilization exactly the same (the author even suggests some very important things to invent differently, especially in better orders)

janus2 OP ,
@janus2@lemmy.sdf.org avatar

It’s one of my favorite books of all time 😁 to the point where I own a hardback of it despite being staunchly pro-just-read-books-on-my-phone

IIRC they actually printed a centimeter ruler in the back of the book as an answer to this specific problem.

neptune ,

What’s the point of recreating our arbitrary system? It just has to be useful and universal

janus2 OP ,
@janus2@lemmy.sdf.org avatar

That’s a fair point. Most likely if a group of people did some kind of Long Term Naked & Afraid experiment they’d just start with some length of particularly well-crafted cordage, call it a New Meter™ and go from there

parpol , in Why did the sound vanish from all of my recording devices at the same moment?

Could it be a bug in a component used in universal sound drivers related to time?

Or maybe a power surge that caused it in all devices at once? Were the devices connected in any way?

Did the devices use any common software or OS?

Were you blasted with radiation which caused a bunch of booleans to flip in all your devices?

McJonalds ,

could this be a solar flare?

Tatar_Nobility OP ,

Were you blasted with radiation which caused a bunch of booleans to flip in all your devices?

I live in Fukushima btw /s.

I don’t want to sound like a conspiracy theorist, but those magnetic waves man, the government is onto something o_O

GoofSchmoofer , in Why has the percentage of the population that are obese or overweight increased so much in the US?
@GoofSchmoofer@lemmy.world avatar

While not the only reason but it seems that low fiber foods (highly processed) contribute more calories to the body than high fiber foods.

ElectronBadger , in What are some popular sci-fi gadgets that are actually possible to construct in theory?
@ElectronBadger@kbin.social avatar

Few decades ago Marvin the Paranoid Android (The Hitchhiker's Guide to the Galaxy) has already been constructed by my human-like parents and is reporting this utmost depressive fact here.

nicktron ,
@nicktron@kbin.social avatar

This thread is such a boooooore.

Dagwood222 , in What are some popular sci-fi gadgets that are actually possible to construct in theory?

We could have been mining the asteroids at any time after 1969…

RememberTheApollo_ ,

I don’t know that mining them is the difficult part. Getting the materials back and/or refined in space is gonna be harder.

QuinceDaPence ,

And in a cost effective manner. Were almost to where it might start being possible, depending on the mineral.

Dagwood222 ,

You’ve got unlimited solar energy and robot technology is getting better every day. People have been working on the problem for decades.

arthur , (edited ) in What happens if an electron collides with an antimatter particle that is not a positron?

I didn’t even know that neutrons have an antiparticle. TIL

Edit: neurons -> neutrons

WidowsFavoriteSon ,

The opposite of a neuron is a maga.

purahna ,
@purahna@lemmygrad.ml avatar

if we’re really getting down to brass tacks, it’s more that you can put together an up antiquark and two down antiquarks to make an antineutron

AmalgamatedIllusions ,

Any composite particle can have an antiparticle counterpart if you replace all of its constituent particles with antiparticles (e.g. anti- up and down quarks in the case of protons and neutrons).

kryptonianCodeMonkey ,

Opposite of 0? -0.

PetDinosaurs ,

Lol, but, for other readers, charge isn’t the only property that has an anti-component when making up anti matter.

Positrons are just the most easily explained and are what people are probably most familiar with.

Saying “electron but with a positive charge” satisfies the curiosity of most people who are smart enough to ask the question but don’t want to write a dissertation.

Plus, PET scanners take advantage of positron/electron annihilation to do their imaging, and that happens all over the world every day.

Which is kinda weird because where else in the world but medical imaging are regular people confronted with actual modern physics. Sure, semiconductors, but they don’t actually have to confront that.

Anyway, I do prefer to say “magic” rather than explain how an MRI works for a lot of people.

count_of_monte_carlo , in Gravity field scaling?

Assuming a spherical earth, if you doubled its mass but kept the radius the same then the gravitational force on the earths surface would be twice that of the current earth.

As long as you keep the earths mass reasonable, you’re in the realm of Newtonian gravitation. Newton’s law of gravitation depends linearly on the mass of the attracting source. So doubling the mass doubles the gravitational force.

At 1 billion solar masses (firmly in the not-reasonable mass range for the earth), you’d need to consider the formation of a black hole. The Schwarzschild Radius for a 1 billion solar mass black hole (aka the event horizon) is almost 20 astronomical units or 2 billion miles. So in that case you wouldn’t be able to measure the change in gravity as you’d be within the event horizon of a black hole.

At an intermediate mass there might be some general relativity effects that could alter the linear relationship between earth mass and gravitational force as measured on the earths surface, but I’m not sure what that would be. If you were to measure earths mass from a large distance, then it should follow Newtonian dynamics and behave linearly with mass.

Jeredin OP ,

Thank you so much for the reply.

My understanding is that most(all?) force fields are made up of waves (as is everything?), so  hypothetically, a Gravity field should be as well? 

FlowVoid ,

No.

A field is a value assigned at every point in space. It is not “made of waves”. But if the field is perturbed by an acceleration, then the perturbation is propagated as a wave.

Simple analogy: every point in the sea has a “depth”. That’s like a field. If a motorboat creates a wake, the “depth” changes temporarily. You see that change as a wave.

count_of_monte_carlo ,

The other answer is correct, it’s not really accurate to say that gravity is made of waves.

In physics, a field is a physical quantity that has a value for each point in space and time The most accurate model for the gravitational field is general relativity, however for many cases it’s sufficient to just use Newtonian Dynamics. In GR, changes to the gravitational field propagate at the speed of light in a vacuum, c. It’s possible to create gravitational waves by rapidly accelerating a massive object, which occurs in inspiralling black holes or neutron stars. But the gravitational force pulling the pair of black holes together isn’t made of waves; the black holes are minimizing their gravitational potential energy as defined by the gravitational field.

force fields are made up of waves (as is everything?),

I wanted to address this since I think you might have a common misconception. Particles (photons, electrons, quarks, protons, neutrons, etc) are described in quantum mechanics using a wavefunction. But this doesn’t make these particles “waves”, they are still quantum mechanical particles. They simply don’t have a defined location (if using a spatial wavefunction, you can also work in an alternative basis like energy or momentum). If the particle interacts with something on the classical scale, it’s wavefunction will collapse to a single point where the location is defined.

If you try to model a quantum mechanical particle as either a classical point-like particle (single point in space) or a classical wave you will fail. Before quantum mechanics was discovered lots of very smart people tried and failed to use just waves or point-like particles. Quantum mechanics, using wavefunctions, is consistent with the fundamental nature of reality as far as we can tell.

Radioactrev , in What shape would the universe's equivalent of a single pixel of 3D space be?

Answer this definitively, and win yourself a Nobel prize!

Many of the leading physicists in today’s age think the shape is a little ‘string,’ if you will.

dorkian_gray ,
@dorkian_gray@lemmy.world avatar

String Theory has been folded into (no pun intended) Quantum Field Theory, which fixes some of what the original theory got wrong. Have you seen any videos from PBS Space Time, on YouTube? If not, I’d highly recommend the following videos on the subject (probably in this order):

I sure do love the implications of our universe consisting of interactions between excitations in a bunch of fields, the rays of which carry energy much like a plucked string. If that’s right, it could be rendered as audio; we would be listening to the music of the universe. It might not be good, but it would be beautiful! 😂

  • All
  • Subscribed
  • Moderated
  • Favorites
  • random
  • [email protected]
  • lifeLocal
  • goranko
  • All magazines