There have been multiple accounts created with the sole purpose of posting advertisement posts or replies containing unsolicited advertising.

Accounts which solely post advertisements, or persistently post them may be terminated.

cecilkorik , (edited )
@cecilkorik@lemmy.ca avatar

Most cheap non-dimmable LEDs have drivers that use resistors to determine the current to drive through the LEDs. As a rule, these are always set too high to overdrive the LEDs (sometimes as much as twice their rated current) for marginal brightness gains and to burn out the bulb prematurely. I’m obviously unable to actually see directly into the operation of the great minds that design LED lightbulbs but logic leaves me with only those two plausible conclusions, I’ll let you decide which motivation you think is a bigger factor for most manufacturers.

Conveniently, most manufacturers carefully fine-tune this value to prematurely destroy the LEDs at just the right time, which requires careful balancing of resistors, and even MORE conveniently (for us) the cheapest way for them to do this is typically to use two resistors. And MOST conveniently (for us), if you were to carelessly break one of the pair of resistors they use, and leave the other one intact, the current would immediately drop to a very reasonable and appropriate level, generating much less heat, drawing much less power, making LED death extremely unlikely, and only modestly reducing brightness in many cases, because LEDs have non-linear brightness and the heavily overdriven ones are typically FAR beyond the point of diminishing returns. In some cases the reduction in power results in basically no visible difference in light output. In some cases it can be argued they’re literally stealing extra power from your electricity bill and using it as an electric heater for no purpose other than to burn out your own light bulbs prematurely so you have to replace them.

The good news is, like I said, removing one of the responsible resistors instantly solves the design flaw and is usually quite easy even without any special tools or electronics knowledge. BigCliveDotCom calls this “Doobying” the bulbs after the Dubai bulbs that were mentioned in other comments. If you watch some of his videos about LED bulbs you should be able to see the pattern of which resistors to remove, if they are on the board they will basically always be right next to each other and relatively small values (typically in the 20 ohms to 200 ohms range). The only modification I make to his procedure is that I prefer to remove the HIGHER value of the two resistors instead of the lower one, which results in perhaps somewhat less lifetime preservation (still much more than the original setting) and less power savings, but more brightness, and is usually adequately good for my purposes. I also use sturdy tweezers to remove the resistor instead of a screwdriver which seems to me that it would have a higher risk of collateral damage.

Is it a lot of work for a single light bulb? Kind of, yes. But once you get it done a bunch of times, you’ll probably rarely have to do it again, as these bulbs last almost forever. In fact, I have yet to have one actually fail, I am mostly just replacing the occasional old unmodified LED bulb from time to time.

This will not work with dimmable bulbs or certain fancy high end bulbs. Also some are much, much easier to modify than others. Clive calls the ones that are relatively easy “hackable” and it’s really a crapshoot to find them. Some have covers/bulbs/diffusers that are nearly impossible to remove without catastrophic damage to the bulb and/or your hands. Others simply use a different circuit design that doesn’t have resistors. Some only have a single resistor, meaning to change the value you need to solder a new one in its place. In my experience, the bargain-basement, junkiest, least reliable bulbs tend to be the easiest to hack this way and often skimp on things like “gluing the lens on” so it’s easy to get off. But you’ll have to experiment to find a brand and style that works well for this.

  • All
  • Subscribed
  • Moderated
  • Favorites
  • [email protected]
  • random
  • lifeLocal
  • goranko
  • All magazines