There have been multiple accounts created with the sole purpose of posting advertisement posts or replies containing unsolicited advertising.

Accounts which solely post advertisements, or persistently post them may be terminated.

notabot ,

Once you can get a good reference for one unit ypu can start to use it to determine the others. None of these are going to be perfectly accurate, but they should be good enough for day-to-day use.

I’d start with time. We’re going to make a sundial. To do this you need to make a drawing compass and some flat ground with plenty of sun. Find a v-shaped stick, or lash a couple together so you can scribe circles in the ground. Start by making one circle around a well marked centre point, then using the same compass, draw another circle centred on the edge of the first. Draw two more circles where the second crosses the first, and two more where those cross it. You should now have a central circle with the perimeter divided into six segments (this is the same technique for drawing a hexagon inside a circle). Put another stick upright in the centre and you have a sundial with 2 hour segments. You can bisect the lines between each of the points to get 1 hour segments, and if it’s big enough, busect again to get 30 minute segments. We’ll get shorter time measurements later.

The next unit to find is the meter. A one meter pendulum completes a swing from one side to the other every second. In order to minimise the effect of air resistance, find a heavy, but not too large rock and tie it to the end of a rope. Measure out approximately out meter of rope (measured from the centre of the rock) and tie it to a solid branch. Next is the tedious bit. Set it swinging as the sundial hits one of it’s marks and count the number of swings until the sundial hits the next mark. You should get 3600 per hour. If you get too many, lengthen the rope and try again, if you get too few, shorten it. Once you have the right number you have both your meter measure and your one second.

You can get a metric tonne, and thereafter a kilogram, by building a balance weigh beam, and a cube shaped container that is exactly one metre on a side. Attach the container to obe side of the beam, and a second container exactly the same distance away from the pivot on the other side. Add rocks to the second container until it balances with the empty first containor. Now fill the first with cold water. Add more weight to the second until it balances again. The additional weight should be exactly one metric tonne. By careful geometry you could reduce tge size of your first container to make this easier, but keeping it big and then dividing the result minimises measurement errors.

Temperature is harder to measure, but you can build a thermometer with any liquid that changes density with temperature. Even water works, although adding alcohol helps I believe. So, while you’re finding the meter, get some fruit and let it ferment. Use the resulting liquid in your thermometer. If you don’t have a glass tube, and can’t make one, use an opaque one, and float a light reed or similar on the liquid, with the end sticking out of the top. Calibrate it with boiling water for 100c, and, assuming a reasonable climate, wrap it against your body for a goid long while to get 37c. If you have accesd to ice, letting it just melt gives you 0c. Dividing the marks you get like this would involve some careful geometric construction, but should yield a usable thermometer. Converting that to Kelvin, as the SI unit, involves adding 273.16.

The ampere and candela are probably of less use in this situation, and are going to be tricky to measure. By assuming gravity is 9.81m/s^2 and using the kilogram you can derive the Newton. From that you have the Joule, and one Joule per second is one Watt. Assuming you build a generator, you can derive the Ampere from it’s older definition relating to the force, in Newtons, between two parallel wires. From there the volt can be derived.

Beyond that, I think you should just hope for rescue!

Thanks for a thought provoking question.

  • All
  • Subscribed
  • Moderated
  • Favorites
  • random
  • [email protected]
  • lifeLocal
  • goranko
  • All magazines