There have been multiple accounts created with the sole purpose of posting advertisement posts or replies containing unsolicited advertising.

Accounts which solely post advertisements, or persistently post them may be terminated.

TauZero OP ,

Your skepticism is excessively cautious 😁. You can work around precision limits perfectly fine as long as you are aware they exist there. Multiplying your epsilon and then dividing later is a legitimate strategy, since every function is linear on a small enough scale! You can even declare that ln(1+x) ~= x and skip the logarithm calculation entirely. Using some random full precision calculator I get:


<span style="color:#323232;">ln((74e15+6.7)/74e15) = 0.000000000000000090540540...
</span>

Compare to the double-precision calculator with workaround:


<span style="color:#323232;">ln((74e15 + 6.7*10e9)/74e15) / 10e9 = 9.0540499...e-17
</span>

Or even:


<span style="color:#323232;">ln(1+x) ~= x
</span><span style="color:#323232;">6.7/74e15 = 9.0540540...e-17
</span>

You are worried about differences in the final answer of less than 1 part in a million! I try to do my example calculations in 3 significant figures, so that’s not even a blip in the intermediate roundoffs.

  • All
  • Subscribed
  • Moderated
  • Favorites
  • random
  • lifeLocal
  • [email protected]
  • goranko
  • All magazines